

WIR! sind

HERSTELLUNG VON DISPOSABLES

Dr.-Ing. Jörg Nestler

bi.FLOW

10. September 2024

BIFLOW SYSTEMS GMBH

We cost-effectively integrate all functionalities in a cartridge → minimizing instrument size towards true "mobile" diagnostics

Integrated Pumping

Our microfluidic cartridges feature builtin electrochemical micropumps, enabling fluid transport via electrical control.

Integrated Heating

If heating is required for certain assay steps, tiny heating elements can be integrated into specific areas of the cartridge, using the same substrate as for the micropumps.

Integrated Reagents

Our technology platform is capable of storing liquid and dry reagents.

TRUE "MOBILE" DIAGNOSTICS: The unique level of integration allows to perform even complex tests with a smartphone.

"DISPOSABLES" – AND FOCUS of the TALK

Lateral Flow Strips

"Microfluidics"

COMPLEXITY

	Low level of integration (Functions performed by instrument)	High level of integration (Functions performed by "disposable")
Advantages	- Cheaper disposable	 Simple control of disposable Simpler instrument (or even just a mobile phone), as no mechanical / pneumatic interface needed in instrument Less maintanance of instrument Operation by lay persons even for complex tests
Disadvantages	- More complex instrument	- Disposable more costly

IT DEPENDS ON THE APPLICATION & USE CASE

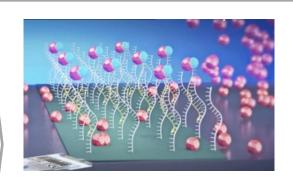
COMPLEXITY vs. QUALITY

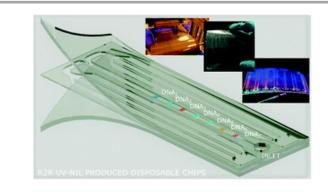
$$(98 \%)^{20} = 67 \%$$

 $(98 \%)^{50} = 36 \%$
 $(95 \%)^{20} = 36 \%$

→ Very often: Quality issue NOT detectable in a FQC!
 → Importance of 100% in-process QCs
 Good estimation: 50 % of production cost = QC

VALUE CHAIN – and WHAT IS INSIDE?





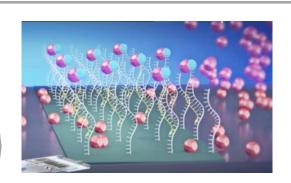
Read Out Device

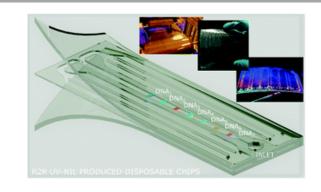
- IVD ELISA, LAMP, PCR
- **ENZYME** Detection
- CELL analysis
- Water, Food analysis

- Active & Passive Microfluidics
- From Milling over Inj. Mold to Roll-to-Roll
- From several 100 to Millions of Units

- **Device Development**
- **Technology Platforms**
- Complete System Integration

VALUE CHAIN – and WHAT IS INSIDE?

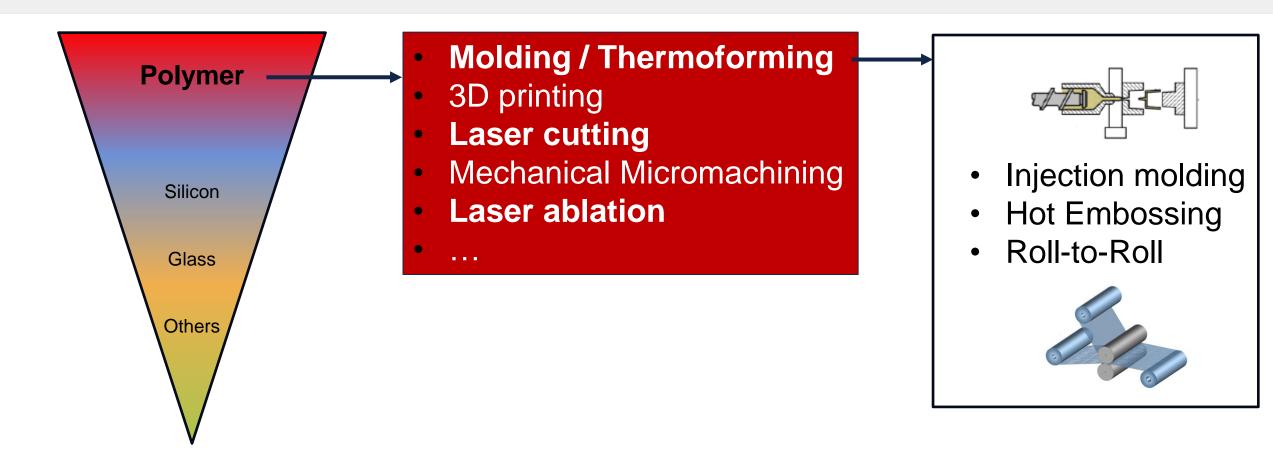




QM

- IVD ELISA, LAMP, PCR
- ENZYME Detection
- CELL analysis
- Water, Food analysis

- Active & Passive Microfluidics
- From Milling over Inj. Mold to Roll-to-Roll
- From several 100 to Millions of Units



- Device Development
- Technology Platforms
- Complete System Integration

PATTERNING: MATERIALS & TECHNOLOGIES

VALUE CHAIN – and WHAT IS INSIDE?

Design

Patterning

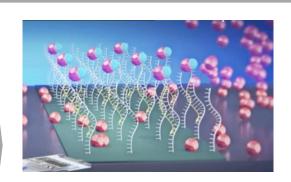
Surface functionalisation

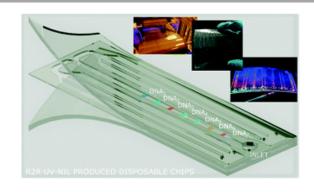
Electrodes Sensors

Backend Services

Read Out Device
System Integration

QM





- IVD ELISA, LAMP, PCR
- ENZYME Detection
- CELL analysis
- Water, Food analysis

- Active & Passive Microfluidics
- From Milling over Inj. Mold to Roll-to-Roll
- From several 100 to Millions of Units

- Device Development
- Technology Platforms
- Complete System Integration

SURFACE FUNCTIONALIZATION

Used for, e.g.:

- Adjustment of wettability (sensor, microfluidics)
 - → dip coating, spray coating, dispensing/spotting

- Blocking of surfaces (sensor, microfluidics)
 - → dip coating, spray coating
- Deposition of biomolecules (recognition molecules on sensor)
 - → spotting

VALUE CHAIN – and WHAT IS INSIDE?

Design

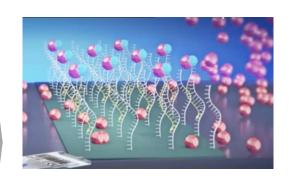
Patterning

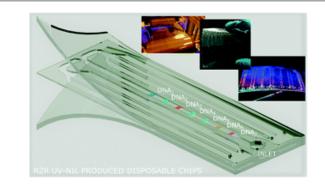
Surface functionalisation

Electrodes Sensors Backend Services

Read Out Device
System Integration

QM

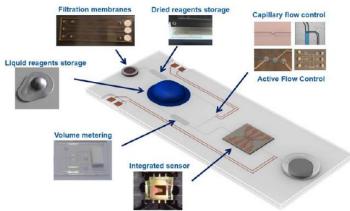




- IVD ELISA, LAMP, PCR
- ENZYME Detection
- CELL analysis
- Water, Food analysis

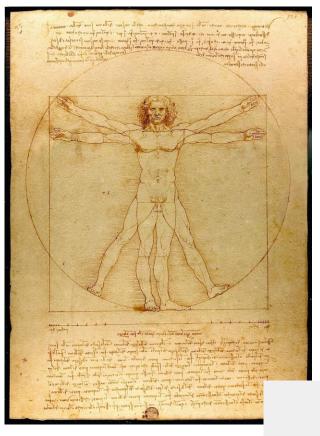
- Active & Passive Microfluidics
- From Milling over Inj. Mold to Roll-to-Roll
- From several 100 to Millions of Units

Microfluidic Chip



- Device Development
- Technology Platforms
- Complete System Integration

BACK-END PROCESSES



- Very often: HYBRID Integration!
- Back-end processes may include:
 - Assembly
 - Glue
 - Adhesive Tapes (structured ~)
 - Thermal bonding
 - Laser bonding
 - Cutting / Drilling
 - Dispensing

<u>Der vitruvianische Mensch</u>,1492 Leonardo da Vinci (Photo: Luc Viatour)

VALUE CHAIN

ONLY BIG PLAYERS WALK ALONE!

... and not even all of them

... and not even all of them succeed(ed)

WE DEVELOP AND PRODUCE Microfluidic Lab-on-a-Foil Systems

Single entry point to research & development services

Comprehensive service portfolio

Fast prototyping and scale up

Multiple funding opportunities

Quality assurance

For reference cases please visit:

https://www.microfluidicshub.eu/projects

MIH – We develop customized lab-on-a-chip systems

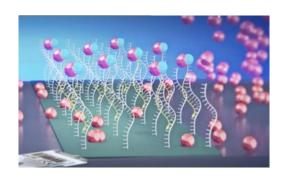
Design

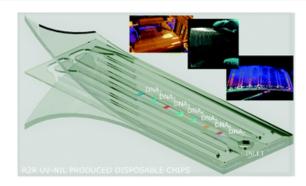
Patterning

Surface functionalisation

Electrodes Sensors Backend Services Read Out Device
System Integration

QM





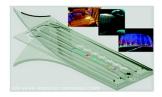
- IVD ELISA, LAMP, PCR
- ENZYME Detection
- CELL analysis
- Water, Food analysis

- Active & Passive Microfluidics
- From Milling over Inj. Mold to Roll-to-Roll
- From Prototypes to Millions of Units

- Device Development
- Technology Platforms
- Complete System Integration

MIH – Single Entry Point to NGM Services

H2020 Partners (e.g. PhotonHub)


MARKETS

USE CASES

CUSTOMERS

EXTERNAL PARTNERS

Service Portfolio

Microfluidic Chip Microfluidic Solution

string Assay

Assay

Design

Patterning

Surface functionalisation

Electrodes Sensors Backend Services Read Out Device
System Integration

QM

Molecular & Biochemical Assay Development

We develop molecular assays for your specific requirements and adjust existing assays to optimally suit R2R processes

Material Development

We develop and modify (biobased) UV resins and thermoplastic polymers, functional inks or selective membranes for your microfluidic system

Design & Simulation

We design and simulate the optimal structures for your microfluidic chip, light guiding structure and cell culture plates

Toolmaking

We master your required (3D) structures and complex nanopatterns and make tools for large scale replication

Replication

We offer a unique portfolio of industrial high-throughput replication processes such as embossing, injection molding and most importantly various types of R2R replication.

Functionalisation

We offer chemical modification as well as deposition and immobilization of customized (bio)functional materials on a wide range of polymer substrates for your labon-a-chip device .

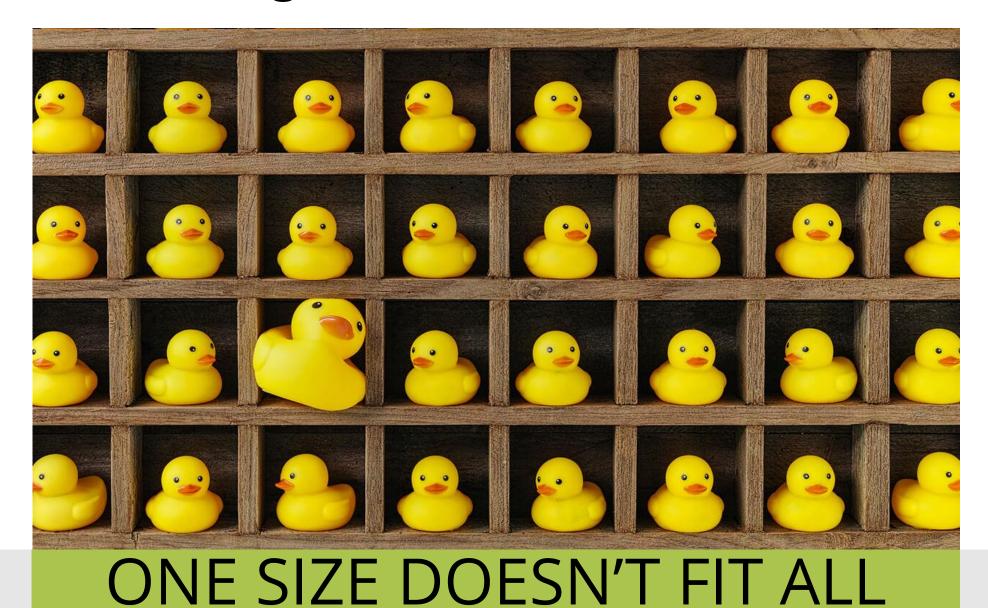
Electrode Printing

We print customized electrode designs and (electrode) arrays on large area substrates. We offer post functionalization of printed electrodes through chemical treatment or spotting processes for sensor applications.

Backend

We offer backend services such as multi-material assembly, foil-to-foil bonding, inlet cutting and chip singulation. We assemble multi-material (hybrid) labon-a-chip devices containing foils, rigid parts and complex microfluidic chip cartridges.

Read-out Devices


We offer detection and acquisition device development as well as complete system integration services

Quality Control

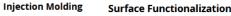
We are establishing a "MIH–Certified" service to ensure design & production according to application-specific standards.

Manufacturing Services

Selected Examples from

(In total: >15 customer projects)

Sepsis diagnostics



Surface Functionalization Electrodes and Sensor Roll-to-Roll

Kidney Transplants

Electrodes and Sensor Injection Molding

Back-end Services

Acoustic separation of exosomes


Bonding

Back-end Services

Inline sensing of microbes

Laser Ablation Wet Etching

Back-end Services

Selection/Sorting of sperm cells

Injection Molding Material Development

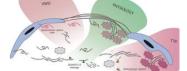
cal selection

Physiological selection

Blood disorders

Injection Molding Assay Development Material Development Surface Functionalization

Detection of multiple coagulation markers



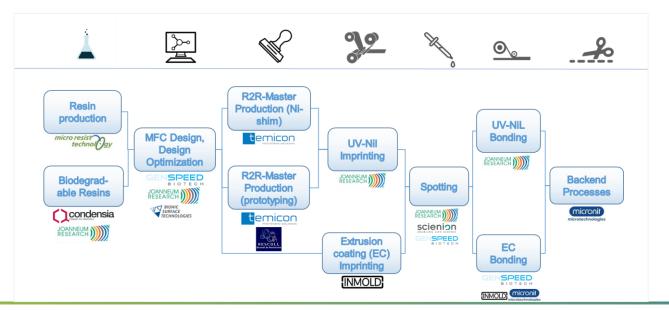
Material Development Surface Functionalization Bonding

REQUIREMENTS of MIH projects:

- Feature sizes: 1µm .. mm
- Quantities in production: several Hundreds to Millions p.a.
- Acceptable manufacturing cost: 250 € .. 1 €
- Materials: Polymers, Glass
- Sensing principles: optical, electrochemical, acoustic, thermal
- Structuring methods: Injection molding, R2R-embossing,

laser cutting, etching, UV-NIL

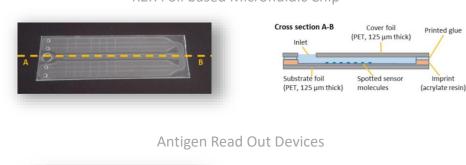
Example 1


Application

Fast Covid19 Antibody test based on blood samples

Project scope

Transfer Injection Molded MFC to R2R MFC for high volume production


Process Flow:

Injection Molded Microfluidic Chip (MFC)

R2R Foil based Microfluidic Chip

Competitive ELISA for high-sensitivity detection of mycotoxins Aflatoxin A1 / M1 in food products.

USP: Rapid and highly sensitive PoN testing for food safety along the logistical chain has the potential to greatly increase efficiency and reduce waste

Project	Sector	Subsector	Analytical Method	Analytical Sample	Analytical Target	PoN
OREL	Agro/Food	Food Safety	Immuno - ELISA	Primary goods - grain	Aflatoxin M1 / B1	Logistical chain

Assay: Design and implementation

Sensor foil: Supply and spotting

Microfluidic cartridge: Design, manufacture & assembly

Experimental assay validation

TIMELINES AND QUANTITIES

Development of a diagnostic Point-of-Care-Product:

- What the customer asks for:
 10 Mio Pieces per year after 3 years, of course for < 1 € per piece
- How reality looks like: 100 ... 20,000
 Pieces per year for 5 years,
 1 Mio pieces after 7 infinite years...
 price definately > 1€

WHERE REVENUE IS GENERATED...

The market value for (microfluidic) Point-of-Need diagnostic tests is 13 times larger than the market for their devices (the "hardware" of the test)!

Point of need **Test** market: **10 Billion** USD

Microfluidic **Devices** for point-of-need testing **780 Million** USD

WIR! sind

Fragen?

BiFlow Systems GmbH Technologie-Campus 1 09126 Chemnitz Germany

j.nestler@biflow-systems.com +49 371 836527-10